

Single-Ended Bus Transceiver

FEATURES

- Operating Power Supply Range 6 V \leq V_{BAT} \leq 36 V
- Reverse Battery Protection Down to $V_{BAT} \ge -24 \text{ V}$
- Standby Mode With Very Low Current Consumption $I_{BAT(SB)}$ = 1 $\mu A \ @ \ V_{DD}$ = 0.5 V
- Low Quiescent Current in OFF Condition I_{BAT} = 120 μ A and $I_{DD} \le 10 \mu$ A
- ISO 9141 Compatible

- Overtemperature Shutdown Function For K Output
- Defined K Output OFF for Open GND
- Defined Receive Output Status for Open K Input
- Defined K Output OFF for TX Input Open
- Open Drain Fault Output
- 2-kV ESD
- Typical Transmit Speeds of 200 kBaud

DESCRIPTION

The Si9241AEY is a monolithic bus transceiver designed to provide bidirectional serial communication in automotive diagnostic applications.

The device incorporates protection against overvoltages and short circuits to V_{BAT} . The transceiver pin is protected and can be driven beyond the V_{BAT} voltage.

The Si9241AEY is built on the Vishay Siliconix BiC/DMOS process. An epitaxial layer prevents latchup.

The RX output is capable of driving CMOS or 1 \times LSTTL load.

The Si9241AEY is available in a space efficient 8-pin SO package. It operates reliably over the automotive temperature range (-40 to 125°C). The Si9241AEY is available in both standard and lead (Pb)-free packages.

PIN CONFIGURATION AND FUNCTIONAL BLOCK DIAGRAM

Si9241AEY

Vishay Siliconix

OUTPUT TABLE AND STATE DIAGRAMS

Note: Over Temp is an internal condition, not meant to be a logic signal.

INPUTS		STATE VARIABLE		OUTPUT TABLE			
CS	ΤХ	Α	В	RX	κ	FAULT	Comments
0	0	1	1	0	0	1	
0	1	1	1	1	1	1	
Х	х	0	1	К	HiZ	0	Over Temp
0	х	1	0	к	HiZ	0	Short Circuit
1	х	1	1	0	0	1	Receive Mode
1	х	1	1	1	1	1	
X = "1" or "0" HiZ = High Impedance State							

ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to Ground	Voltage on V _{DD}
Voltage On V _{BAT}	K Pin Only, Short Circuit Duration (to V _{BAT} or GND) Continuous
Voltage K	Operating Temperature (T _A)40 to 125°C
Voltage Difference V _(VBAT, K)	Junction and Storage Temperature
Voltage or Max. Current On Any Pin	
(Except V _{BAT} , K)	Thermal Resistance Θ_{JA}

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE

/oltage Referenced to Ground	
/ _{DD}	
/ _{BAT}	

К	6 V to 36 V
Digital Inputs	0 to V_{DD}

SPECIFICATIONS	_							_	
			Test Conditions Unless Specified		Limits -40 to 125°C				
Parameter Symb		V _{DD} = 4.5 to 5.5 V V _{BAT} = 6 to 36 V		Temp ^a	Min ^b	Тур ^с	Max ^b	Unit	
Transmitter and Logic Level	s								
CS, TX Input Low Voltage VILT				Full			1.5	v	
CS, TX Input High Voltage	VIHT			Full	3.5			v	
TX Input Capacitance ^d	CINT			Full			10	pF	
CS, TX Input Pull-up Resistance	Input Pull-up Resistance R_{TX} , R_{CS} V_{DD} = 5.5 V, TX or \overline{CS} = 1.5 V, 3.5 V		V, TX or CS = 1.5 V, 3.5 V	Full	10	20	40	kΩ	
K Transmit		•					•		
		R_L = 510 Ω ±5%, V_BAT = 6 to 18 V		Full			0.2 V _{BAT}		
K Output Low Voltage	V _{OLK}	R _L = 1 kΩ	$R_{I} = 1 \ k\Omega \ \pm 5\%$, $V_{BAT} = 16$ to 36 V				0.2 V _{BAT}	-	
		$R_{I} = 510 \Omega \pm 5\%, V_{BAT} = 4.5 V$		Full			1.2	v	
		$R_{L} = 510 \Omega \pm 5\%, V_{BAT} = 4.5 \text{ to } 18 \text{ V}$		Full	0.95 V _{BAT}				
K Output High Voltage	VOHK	R_L = 1 k $\Omega~\pm$ 5% , V_{BAT} = 16 to 36 V		Full	0.95 V _{BAT}				
K Rise, Fall Times	t _r , t _f	5	See Test Circuit	Full			9.6	μs	
K Output Sink Resistance	Rsi			Full			110	Ω	
K Output Capacitance ^d	CO	0.	CS = 0 V, TX = 0 V				20	pF	
Receiver		-							
K Input Low Voltage	V _{ILK}			Full			0.35 V _{BAT}		
K Input High Voltage	VIHK			Full	0.65 V _{BAT}			V	
K Input Hysteresis ^{,c, d}	V _{HYS}			Full		0.05 V _{BAT}		-	
K Input Currents	I _{IHK}		V _{IHK} = V _{BAT}	Full			20	μΑ	
RX Output Low Voltage	V _{OLR}	$\overline{\text{CS}} = 4 \text{ V}$	V _{ILK} = 0.35 V _{BAT} I _{OLR} = 1 mA	Full			0.4	V	
RX Pull-up Resistance	R _{RX}			Full	5		20	kΩ	
		R_L = 510 $\Omega\pm$ 5%, V_{BAT} = 6 to 18 V C_L = 10 nF, See Test Circuit		Full		3	10	-	
RX Tum On Delay	^L d(on)	R_L = 1 k $\Omega~\pm$ 5% , V_{BAT} = 16 to 36 V C_L = 4.7 nF, See Test Circuit		Full		3	10		
RX Turn Off Delay	tdiaff	$R_L = 510 \ \Omega \pm 5\%$, $V_{BAT} = 6$ to 18 V $C_L = 10$ nF, See Test Circuit		Full		3	10	μσ	
	-4(01)	$R_{L} = 1 k\Omega$ $C_{L} = 4.$	±5%, V _{BAT} = 16 to 36 V 7 nF, See Test Circuit	Full		3	10		
Supplies									
Bat Supply Current On	I _{BAT(on)}	CS = T	$TX = 0 V, V_{BAT} \le 16 V$	Full		1.2	3	mA	
Bat Supply Current Off	I _{BAT(off)}	CS = High	, $V_{BAT} \le 12$ V, TX = High ^f	Full		120	220		
Bat Supply Current Standby	I _{BAT(SB)}	V _{DD} ≤	\leq 0.5 V, V _{BAT} \leq 12 V	Full		<1	10	μΑ	
Logic Supply Current On	I _{DD(on)}	$V_{DD} \leq 5.5 \text{ V}, \text{TX} = 0 \text{ V}$		Full		1.4	2.3	mA	
Logic Supply Current Off	I _{DD(off)}	$\overline{\text{CS}}$ = High, V _{BAT} \leq 12 V, TX = High ^f		Full			10	μΑ	
Miscellaneous									
TX Transmit Baud Rate	BR _T	R _L = 510 Ω, C _L = 10 nF		Full	10.4			Line and	
RX Receive Baud Rate ^c	C Receive Baud Rate ^c BR _R 6 V < V _{BAT} < 16 V, C _{RX} = 2		_{BAT} < 16 V, C _{RX} = 20 pF	Full		200		краио	
Transmission Frequency	f _{K-RXK}	6 V < V _{BAT} < 1	6 V, R_K = 510 Ω , $C_K \le 1.3 \text{ nF}$	Full	50	200		kHz	
Fault Output Low Voltage	V _{OLF}	$\overline{\text{CS}} = \text{T}_{\text{X}} = 0$	0 V, K = V _{BAT} , I _{OLF} = 1 mA	Full			0.4	V	
CS Minimum Pulse Width ^{d, e}	t _{cs}	T			1			μs	
Over Temperature Shutdown ^d	T _{SHUT}		Temperature Rising		160	180		·~	
Temperature Shutdown Hysteresis ^c T _{HYST}					30				

Notes

a.

tes Room = 25°C, Cold and Hot = as determined by the operating temperature suffix. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. Guaranteed by design, not subject to production test. Minimum pulse width to reset a fault condition. High referes to Logic High and Low refers to Logic Low. b.

c.

d.

e. f.

Vishay Siliconix

PIN CONFIGURATION

Top View

ORDERING INFORMATION				
Part Number	Temperature Range			
Si9241AEY-T1	40 to 125°C			
Si9241AEY-T1—E3 (Lead (Pb)-Free)	-40 to 125°C			

PIN DESCRIPTION					
Pin Number Symbol		Description			
1	V _{DD}	Positive Power Supply			
2	TX	Transmit, Input			
3	CS	Chip Select, Input			
4	FAULT	Fault, Open Drain Output			
5	GND	Ground Connection			
6	К	Transmit/Receive, Bidirectional			
7	V _{BAT}	Battery Power Supply			
8	RX	Receiver, Output			

FUNCTIONAL DESCRIPTION

The Si9241AEY can be either in transmit or receive mode and it contains over temperature, and short circuit V_{BAT} fault detection circuits.

The voltage on K is internally compared to V_{BAT/2}. If the voltage on the K pin is less than V_{BAT/2} then RX output will be "low." If the voltage on the K pin is greater than V_{BAT/2} then RX output will be "high."

In order to be in transmit mode, \overline{CS} must be set "low." When \overline{CS} and TX are set "low" the internal MOSFET will turn on, causing the K pin to be "low." In the transmit mode, the processor monitors RX and TX. When the two mirror each other there is no fault. In the event of over temperature, or short

circuit to V_{BAT}, the Si9241AEY will turn off the K output to protect the IC and the external open drain FAULT pin will be asserted. The K pin will stay in high impedance and RX will follow the K pin. The fault will be reset when \overline{CS} is toggled high. RX, \overline{CS} and TX pins have an internal pull up resistor to V_{DD} while the K pin has internal pull down resistors. When any one of the TX, V_{BAT} or GND pins is open the K output is off.

When \overline{CS} is set "high" the Si9241AEY is in receive mode and the internal MOSFET for the K pin is turned off. The RX output will follow the K pin. If \overline{CS} is "low" while the IC is receiving data, an incorrect fault signal will occur.

To inhibit the short detect, tie \overline{CS} and TX together.

TEST CIRCUIT AND TIMING DIAGRAMS (TRANSMIT ONLY)

APPLICATION CIRCUIT

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.